Email updates

Keep up to date with the latest news and content from Critical Care and BioMed Central.

Open Access Highly Accessed Research

Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients

Kyle J Gunnerson1, Melissa Saul2, Shui He3 and John A Kellum4*

Author Affiliations

1 Assistant Professor, VCURES (Virginia Commonwealth University Reanimation Engineering Shock Center) Laboratory, Departments of Anesthesiology/Critical Care and Emergency Medicine, Medical College of Virginia/Virginia Commonwealth University, 1200 East Broad Street, Richmond, VA, 23298, USA

2 Director, Clinical Research Informatics Service, University of Pittsburgh, 450 Scaife Hall, 200 Lothrop St. Pittsburgh, PA, 15213, USA

3 Research Assistant, Department of Biostatistics, University of Pittsburgh, Graduate School of Public Health, Crabtree Hall, Pittsburgh, PA, 15213, USA

4 Professor, CRISMA (Clinical Research, Investigation, and Systems Modeling of Acute illness) Laboratory, Department of Critical Care Medicine, University of Pittsburgh, 608, Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA

For all author emails, please log on.

Critical Care 2006, 10:R22  doi:10.1186/cc3987

Published: 10 February 2006

Abstract

Introduction

Acid–base abnormalities are common in the intensive care unit (ICU). Differences in outcome exist between respiratory and metabolic acidosis in similar pH ranges. Some forms of metabolic acidosis (for example, lactate) seem to have worse outcomes than others (for example, chloride). The relative incidence of each type of disorder is unknown. We therefore designed this study to determine the nature and clinical significance of metabolic acidosis in critically ill patients.

Methods

An observational, cohort study of critically ill patients was performed in a tertiary care hospital. Critically ill patients were selected on the clinical suspicion of the presence of lactic acidosis. The inpatient mortality of the entire group was 14%, with a length of stay in hospital of 12 days and a length of stay in the ICU of 5.8 days.

Results

We reviewed records of 9,799 patients admitted to the ICUs at our institution between 1 January 2001 and 30 June 2002. We selected a cohort in which clinicians caring for patients ordered a measurement of arterial lactate level. We excluded patients in which any necessary variable required to characterize an acid–base disorder was absent. A total of 851 patients (9% of ICU admissions) met our criteria. Of these, 548 patients (64%) had a metabolic acidosis (standard base excess < -2 mEq/l) and these patients had a 45% mortality, compared with 25% for those with no metabolic acidosis (p < 0.001). We then subclassified metabolic acidosis cases on the basis of the predominant anion present (lactate, chloride, or all other anions). The mortality rate was highest for lactic acidosis (56%); for strong ion gap (SIG) acidosis it was 39% and for hyperchloremic acidosis 29% (p < 0.001). A stepwise logistic regression model identified serum lactate, SIG, phosphate, and age as independent predictors of mortality.

Conclusion

In critically ill patients in which a measurement of lactate level was ordered, lactate and SIG were strong independent predictors of mortality when they were the major source of metabolic acidosis. Overall, patients with metabolic acidosis were nearly twice as likely to die as patients without metabolic acidosis.