Email updates

Keep up to date with the latest news and content from Critical Care and BioMed Central.

Commentary

Death of the septic monocyte: is more better?

Theo J Moraes1 and Gregory P Downey2*

Author Affiliations

1 Division of Respiratory Medicine, Department of Pediatrics, the Hospital for Sick Children, Toronto, Ontario, Canada

2 Division of Respirology, Department of Medicine, The University of Toronto, and The Toronto General Hospital Research Institute of University Health Network, Toronto, Ontario, Canada

For all author emails, please log on.

Critical Care 2006, 10:146  doi:10.1186/cc4950


See related research by Giamarellos-Bourboulis et al., http://ccforum.com/content/10/3/R76

The electronic version of this article is the complete one and can be found online at: http://ccforum.com/content/10/3/146


Published:2 June 2006

© 2006 BioMed Central Ltd

Abstract

Apoptosis is of pivotal importance in the pathogenesis of sepsis. Depending on the cell type involved and the time point of the disease process, apoptosis may be linked to either a good or a bad outcome. Work presented in this issue by Giamarellos-Bourboulis and coworkers suggests that an early increase in the apoptosis of blood monocytes is associated with improved survival in patients with varying degrees of sepsis. Although the mechanism by which monocyte apoptosis influences the outcome of sepsis cannot be determined by this study, these observations represent an important advance in our understanding of this complicated disease process.

Commentary

Apoptosis is a tightly regulated process by which cells orchestrate their own dismantling and disposal in an orderly and noninflammatory manner. Apoptosis is critical for homeostasis, development and – as highlighted by recent work from Giamarellos-Bourboulis and colleagues [1] (presented in this issue) – for regulation of inflammation and immune cell function. Since its first description in 1972 [2] there has been an explosion of literature on this topic. A Pubmed search for 'apoptosis' yields over 100,000 citations. A question when faced with such a number is coincidentally the same as that raised by Giamarellos-Bourboulis and colleagues; when is enough apoptosis, enough?

Sepsis and septic shock represent an over-exuberant host response to an infectious insult. Neutrophils, monocytes and tissue macrophages play key roles in the initial reaction and release a variety of cytokines to marshal the immune response. Once the threat is contained and/or the adaptive immune response is awakened, the innate immune cells are downregulated and must be disposed of in a timely and noninjurious manner because some of them are proverbial 'ticking time bombs'. Apoptosis represents a key mechanism in this orderly downregulation and disposal.

It has been suggested that dysregulated apoptosis may play a role in increasing the duration and/or severity of the systemic response to sepsis [3]. Clearly, monocytes and macrophages can contribute to inflammation simply by 'hanging around' longer with the opportunity to release their cytotoxic products that damage host cells. Additionally, there is evidence that phagocytosis of apoptotic cells leads to active elaboration of anti-inflammatory signals [4]. Thus, reduced apoptosis may contribute to inflammation in a number of ways, with the end result being that the host immune response contributes more to damaging the host than to protecting it. However, apoptosis is not all good. It is important to note that apoptosis of structural cells such as endothelium or epithelium in systemic inflammatory response syndrome is associated with disrupted organ function [5,6]. Furthermore, lymphocyte apoptosis is associated with a poor outcome in septic shock [7], presumably because these cells are important regulators of the immune response and coordinate the body's response to infection.

Giamarellos-Bourboulis and coworkers [1] add to this literature and present evidence that early monocyte apoptosis confers a survival advantage in sepsis related to ventilator-associated pneumonia. Their study group of patients was divided into those with low (<50%) and high (>50%) rates of monocyte apoptosis when tested on day 1. Forty-nine per cent (28 out of 57) of those with low apoptosis died versus only 15% (5 out of 33) of those with high degrees of monocyte apoptosis. This is a remarkable finding, and theirs is one of the first studies to correlate monocyte apoptosis with survival in sepsis. However, some questions arise from these observations.

First, is monocyte apoptosis in the study simply a marker for another more proximate factor that is causally associated with mortality? The authors note that there is a difference in the incidence of bacteraemia between the low and high apoptosis groups but they do not discuss any other parameters. Although this group of 90 patients is as homogenous as one can except in a study of sepsis, there are differences between patients that could contribute to mortality. Thus, demographic factors (age, sex), illness severity (Acute Physiology and Chronic Health Evaluation II score, Sequential Organ Failure Assessment score) and other comorbid conditions (trauma, diabetes, medications, etc.) may be confounding variables if differences exist between the low and high apoptosis groups.

Second, percentage apoptosis changed over the 7 days during which blood was collected, and so those patients assigned to the low group may at times have had more than 50% apoptosis and vice versa. What is the significance of this? Timing of apoptosis is sure to be important (theoretically, too much too early may be associated with a poor outcome, as would too little too late). Duration of illness before enrolment in this study may introduce enough variability to make timing difficult to determine.

Third, if monocyte apoptosis is beneficial, then what is the mechanism? One possibility, mentioned by the authors, is a decreased release of proinflammatory cytokines by monocytes undergoing apoptosis. However, of the serum cytokines measured (intereukin-6, interleukin-8 and tumour necrosis factor-α) no correlation with survival was noted. This is a critical issue if we hope to modulate this process to the advantage of patients.

Finally, there are a variety of technical considerations in measuring apoptosis in peripheral blood monoctyes that introduce uncertainty into the measurement. Discarded nonadherent cells may have been apoptotic monocytes. The recovery of apoptotic monocytes may not be complete in a Ficoll density gradient because cell density is altered by apoptosis. Also, healthy monocytes may ingest apoptotic cells and through membrane transfer subsequently stain falsely positive for annexin V. Ultimately, it may be the responses of monocytes that have already extravasated from the blood into the tissues that is most relevant to the outcome of sepsis, and this was not measured in the study.

Given these points, it is too soon to say with certainty that increased early monocyte apoptosis confers a survival advantage in the context of sepsis. However, the study by Giamarellos-Bourboulis and coworkers is an important first step in trying to make sense of a complicated and fundamentally important process. At the very least, this assay of monocyte apoptosis may conceivably be used as a prognostic tool, especially if it is combined with other factors in a multivariate model.

Competing interests

The authors declare that they have no competing interests.

References

  1. Giamarellos-Bourboulis EJ, Routsi C, Plachouras D, Markaki V, Raftogiannis M, Zervakis D, Koussoulas V, Orfanos S, Kotanidou A, Armaganidis A, et al.: Early apoptosis of blood monocytes as a mechanism of protection of the septic host.

    Critical Care 2006, 10:R76. PubMed Abstract | BioMed Central Full Text OpenURL

  2. Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.

    Br J Cancer 1972, 26:239-257. PubMed Abstract OpenURL

  3. Jimenez MF, Watson RW, Parodo J, Evans D, Foster D, Steinberg M, Rotstein OD, Marshall JC: Dysregulated expression of neu-trophil apoptosis in the systemic inflammatory response syndrome.

    Arch Surg 1997, 132:1263-1269.

    discussion 1269–1270

    PubMed Abstract OpenURL

  4. Huynh ML, Fadok VA, Henson PM: Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation.

    J Clin Invest 2002, 109:41-50. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL

  5. Mutunga M, Fulton B, Bullock R, Batchelor A, Gascoigne A, Gille-spie JI, Baudouin SV: Circulating endothelial cells in patients with septic shock.

    Am J Respir Crit Care Med 2001, 163:195-200. PubMed Abstract | Publisher Full Text OpenURL

  6. Roth GA, Krenn C, Brunner M, Moser B, Ploder M, Spittler A, Pelinka L, Sautner T, Wolner E, Boltz-Nitulescu G, et al.: Elevated serum levels of epithelial cell apoptosis-specific cytokeratin 18 neoepitope m30 in critically ill patients.

    Shock 2004, 22:218-220. PubMed Abstract | Publisher Full Text OpenURL

  7. Le Tulzo Y, Pangault C, Gacouin A, Guilloux V, Tribut O, Amiot L, Tattevin P, Thomas R, Fauchet R, Drenou B: Early circulating lymphocyte apoptosis in human septic shock is associated with poor outcome.

    Shock 2002, 18:487-494. PubMed Abstract | Publisher Full Text OpenURL