Open Access Highly Accessed Research

Automatic detection of patient-ventilator asynchrony by spectral analysis of airway flow

Guillermo Gutierrez*, Guillermo J Ballarino, Hulya Turkan, Juan Abril, Lucy De La Cruz, Connor Edsall, Binu George, Susan Gutierrez, Vinayak Jha and Jalil Ahari

Author Affiliations

Pulmonary and Critical Care Medicine Division, The George Washington University MFA, 2150 Pennsylvania Ave, NW, Washington, DC 20037, USA

For all author emails, please log on.

Critical Care 2011, 15:R167  doi:10.1186/cc10309


See related commentary by Navalesi, http://ccforum.com/content/15/4/181

Published: 12 July 2011

Abstract

Introduction

Adequate ventilatory support of critically ill patients depends on prompt recognition of ventilator asynchrony, as asynchrony is associated with worse outcomes.

We compared an automatic method of patient-ventilator asynchrony monitoring, based on airway flow frequency analysis, to the asynchrony index (AI) determined visually from airway tracings.

Methods

This was a prospective, sequential observational study of 110 mechanically ventilated adults. All eligible ventilated patients were enrolled. No clinical interventions were performed. Airway flow and pressure signals were sampled digitally for two hours. The frequency spectrum of the airway flow signal, processed to include only its expiratory phase, was calculated with the Cooley-Tukey Fast Fourier Transform method at 2.5 minute intervals. The amplitude ratio of the first harmonic peak (H1) to that of zero frequency (DC), or H1/DC, was taken as a measure of spectral organization. AI values were obtained at 30-minute intervals and compared to corresponding measures of H1/DC.

Results

The frequency spectrum of synchronized patients was characterized by sharply defined peaks spaced at multiples of mean respiratory rate. The spectrum of asynchronous patients was less organized, showing lower and wider H1 peaks and disappearance of higher frequency harmonics. H1/DC was inversely related to AI (n = 110; r2 = 0.57; P < 0.0001). Asynchrony, defined by AI > 10%, was associated H1/DC < 43% with 83% sensitivity and specificity.

Conclusions

Spectral analysis of airway flow provides an automatic, non-invasive assessment of ventilator asynchrony at fixed short intervals. This method can be adapted to ventilator systems as a clinical monitor of asynchrony.